Biological characteristics of adipose tissue-derived stem cells labeled with amine-surface-modified superparamagnetic iron oxide nanoparticles.

نویسندگان

  • Nan Wang
  • Jing-Yuan Zhao
  • Xin Guan
  • Yue Dong
  • Yang Liu
  • Xiang Zhou
  • Ren'an Wu
  • Yue Du
  • Liang Zhao
  • Wei Zou
  • Chao Han
  • Lin Song
  • Bo Sun
  • Yan Liu
  • Jing Liu
چکیده

Cell labeling and tracking are becoming increasingly important areas within the field of stem cell transplantation. The ability to track the migration and distribution of implanted cells is critical to understanding the beneficial effects and mechanisms of stem cell therapy. The present study investigated the effects of amine-surface-modified superparamagnetic iron oxide (SPIO) nanoparticles on the biological properties of human adipose tissue-derived stem cells (hADSCs). Monodisperse hydrophobic magnetite (Fe3 O4 ) nanoparticles were prepared using silicon and surface-modified with amine coating. Cell viability, proliferation, differentiation potential, and surface marker expression were evaluated. The magnetic particles (10-18 nm) displayed high labeling efficiency and stability in hADSCs. SPIO-labeled cells produced a hypointense signal and were effectively visualized by MRI for up to 21 days. The results of MTT proliferation assays and flow cytometry analysis demonstrated that SPIOs were biocompatible, viz. the labeling process did not cause cell death or apoptosis and had no side effects on cell proliferation. In vivo experiments showed that the magnetic particles did not affect liver and kidney function. The successful and stable labeling of hADSCs combined with efficient magnetic tropism demonstrates that SPIOs are promising candidates for hADSC tracking in hADSC-based cell therapy applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of different concentrations of iron oxide nanoparticles on the expression of p53 gene in human amniotic membrane-derived mesenchymal stem cells  

Superparamagnetic iron oxide nanoparticles (SPIONs) have made extensive advances in nanotechnology. The unique properties of these particles have expanded their application in various fields, including medicine. One of these applications is non-invasive analysis for cell tracking. However, the possibility of toxicity in cells is reported by these nanoparticles. Due to the fact that cellular dam...

متن کامل

Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such ...

متن کامل

Superparamagnetic iron oxide nanoparticle targeting of adipose tissue-derived stem cells in diabetes-associated erectile dysfunction

Erectile dysfunction (ED) is a major complication of diabetes, and many diabetic men with ED are refractory to common ED therapies. Adipose tissue-derived stem cells (ADSCs) have been shown to improve erectile function in diabetic animal models. However, inadequate cell homing to damaged sites has limited their efficacy. Therefore, we explored the effect of ADSCs labeled with superparamagnetic ...

متن کامل

Evaluation of umbilical cord mesenchymal stem cell labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-lysine.

OBJECTIVE The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. METHODS The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dext...

متن کامل

Surface-Modified Superparamagnetic Nanoparticles Fe3O4@PEG for Drug Delivery

In this work, we report on the synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, CTAB as cationic surfactant and butanol as a cosurfactant. Surface modification have been carried out by using poly(ethyleneglycol) (PEG). The structure,morphology, and magnetic properties of the products were characteriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell biology international

دوره 39 8  شماره 

صفحات  -

تاریخ انتشار 2015